Structural Investigation of Re_2O_7/γ -Al₂O₃ Catalysts for Olefin Disproportionation¹

It is known that $\text{Re}_2\text{O}_7/\gamma$ -Al₂O₃ is an active catalyst for olefin disproportionation reactions (1); however, despite a number of papers dealing with the catalytic properties of this system (e.g., 2, 3), the structure of this catalyst has not yet been investigated in detail (4, 5). In addition, the promoting effect of small amounts of various SnR_4 compounds (where R = alkylgroup) is of current interest (6). Thus, this short note deals with our preliminary structural studies of nonpromoted and $SnBu_4$ (Bu = butyl) promoted Re_2O_7/γ -Al₂O₃ catalysts using methods of differential thermal analysis (DTG, DTA), X-ray diffraction, and Mössbauer spectroscopy.

EXPERIMENTAL

A typical catalyst containing 10–20 wt% Re₂O₇ was prepared by impregnation of γ -Al₂O₃ (surface area ~180 m²g⁻¹) with an aqueous solution of ammonium perrhenate, followed by drying at 380 K and calcining in dry air at 870 K for 2-h periods. Promoted catalysts were prepared by subsequent addition of SnBu₄ from a pentane solution, followed by drying at 295 K in a flowing inert gas stream; the SnBu₄ content of these promoted catalysts was ca. 6 wt%.

The DTA and DTG data were obtained using a MOM (Hungary) instrument; 200-mg samples were studied in flowing air at a heating rate of 4.5 K min⁻¹. X-ray diffraction measurements were made with a

¹Work done in the USSR in accord with the USA-USSR cooperative program in chemical catalysis.

URS-55 apparatus using filtered CuK α radiation. Mössbauer spectra were recorded using an electrodynamic spectrometer with ^{119m}SnO₂ and Ca^{119m}SnO₃ sources; isomer shifts were measured relative to SnO₂.

RESULTS AND DISCUSSION

DTG and DTA

The DTG and DTA scans, between 380 and 1270 K, for ammonium perrhenate, γ -Al₂O₃, and for γ -Al₂O₃ after NH₄ReO₄ impregnation and drying at 380 K are shown in Fig. 1 as curves 1-1', 2-2', and 3-3', respectively. It is seen therein that ammonium perrhenate decomposes in the temperature interval 580-750 K (curves 1-1'), and this process includes two steps. The DTG scan of γ -Al₂O₃ (curve 2) shows no visible peaks, while the DTA scan (curve 2') indicates a small endothermic process at ca. 570–690 K corresponding to one of the phase transitions of γ -Al₂O₃ (7). During these experiments, a gradual weight decrease for the γ -Al₂O₃ was noted, amounting to a 15% change from the beginning to the end of the scan. Finally, it can be seen in curves 3-3' that the impregnated γ -Al₂O₃ sample does not show to any great extent the peaks characteristic of NH_4ReO_4 at 580–750 K; instead, a new peak appears at temperatures higher than 1120 K. (The small peak at ca. 600 K in curve 3 might indicate that several percent of the rhenium present on the dried sample is in the NH_4ReO_4 state.)

From the above data, one may conclude that a strong interaction between the

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved.

FIG. 1. DTG (curves 1–3) and DTA (curves 1'–3') scans for : 1, 1' NH₄ReO₄; 2, 2' γ -Al₂O₃; 3, 3' Re₂O₇/ γ -Al₂O₈.

rhenium and the support takes place after impregnation and drying at 380 K. It is important to also report that the DTG and DTA scans of the calcined (at 870 K) $\text{Re}_2\text{O}_7/\gamma-\text{Al}_2\text{O}_3$ sample were identical to curves 3-3'. From this it follows that the rhenium does not exist in the form of Re_2O_7 particles on the $\gamma-\text{Al}_2\text{O}_3$ surface, since the sublimation temperature of Re_2O_7 is ca. 630 K (8); instead, the rhenium must be present as a tightly bound surface compound that is thermally stable in air up to 1120 K. This is in agreement with the results of Freel (4) and Johnson and LeRoy (5).

X-ray Diffraction

A sample of massive ammonium perrhenate treated in air at 380 K gave rise to an X-ray diffraction pattern characteristic of its tetragonal crystal structure with $a = 5.87 \pm 0.02$ Å and $c = 12.94 \pm 0.02$ Å; hence, the NH₄ReO₄ is thermally stable up to 380 K. The X-ray pattern for the γ -Al₂O₃ alone consisted of two broad peaks from the (400) and (440) planes of the pseudo-spinel structure with lattice parameter $a \cong 7.93$ Å. For the calcined (at 870 K) 10% Re₂O₇/ γ -Al₂O₃ sample, five broad peaks were observed in the diffraction pattern. The most intense reflections were again from the pseudo-spinel (400) and (440) planes, and the three new, and less intense, peaks were from the pseudo-spinel (113), (222), and (115) planes. None of the reflections characteristic of either Re₂O₇ (9) or NH₄ReO₄ were detected in the diffraction pattern of the calcined Re₂O₇/ γ -Al₂O₃ sample. As expected, a mechanical mixture of 10 wt% NH₄ReO₄ and γ -Al₂O₃ showed diffraction peaks characteristic of both of the individual components of the mixture.

From the X-ray data one may again conclude that the rhenium is present on the surface of γ -Al₂O₃ not in the form of Re₂O₇ particles, but in the form of a tightly bound surface compound. For example, this surface compound could be formed epitaxially on the predominant surface planes of γ -Al₂O₃ in accord with the monolayer model of Schuit and Gates (10). In fact, the addition of rhenium to the γ -Al₂O₃ changes the relative intensities of the pseudo-spinel diffraction peaks, suggesting a relation between the structures of the γ -Al₂O₃ and the surface compound. In addition, the X-ray data do not exclude the possibility of partial Al³⁺ replacement by Re^{7+} (Re^{7+} is the expected oxidation state for the calcined sample, in view of

FIG. 2. Mössbauer spectrum at 77 K of SnBu₄ promoted $\text{Re}_2\text{O}_7/\gamma$ -Al₂O₃.

the work by Johnson and LeRoy (5)) in a "presurface layer"; indeed, the ionic radii of these cations are similar (0.57 and 0.52 Å for Al³⁺ and Re⁷⁺, respectively (11)).

Mössbauer Spectroscopy

A typical Mössbauer spectrum at 77 K of a SnBu₄-promoted Re₂O₇/ γ -Al₂O₃ catalyst is shown in Fig. 2. This spectrum consists of three resolved lines, and it can be interpreted in the following manner. The central line (isomer shift of 1.3 ± 0.1 mm s^{-1}) is due to SnBu₄ molecules either weakly adsorbed on the surface or in a state of capillary condensation (12); the remaining two peaks can be assigned to an asymmetric doublet (isomer shift = 1.5 \pm 0.1 mm s⁻¹, quadrupole splitting = 3.5 $\pm 0.1 \text{ mm s}^{-1}$) arising from chemisorbed tin compounds of the type $R_{4-n}Sn(OMe)_n$, where n may be between 1 and 3, and Me is a metal ion (e.g., Me could be a tin or rhenium cation). Similar spectra were obtained earlier for the initial stages of adsorption of SnR_4 (R = methyl, ethyl) on γ -Al₂O₃ at 298 K (12). The intensity asymmetry of the doublet may be caused by either the Goldanskii-Karyagin effect (13), or the presence of $Sn(OMe)_4$ which would produce a spectral peak in the region of the left component of the doublet.

Of interest in the present discussion is the fact that the Mössbauer spectrum of the tin species present on the surface of γ -Al₂O₃ is qualitatively the same as that for the tin species on Re₂O₇/ γ -Al₂O₃. It then follows that the adsorption sites on these two surfaces are similar. These sites, that lead to the formation of R_{4-n}Sn(OMe)_n, may be surface hydroxyl groups or Lewis acid sites. In the first case, the process of chemisorption will be accompanied by the removal of butane, and in the second case the acid sites (e.g., anion vacancies) will act as acceptors of butyl radicals formed by the Sn-R bond cleavage. The formation of anion vacancies usually takes place during the thermal dehydroxylation of the support; however, in the presence of rhenium, anion vacancies may also be formed by removal of oxygen from the surface capping layer (in the monolayer model (10)) accompanied by the partial reduction of Re^{7+} .

At present, the exact nature of the surface sites for $R_{4-n}Sn(OMe)_n$ formation, and the mechanism of tin promotion of Re_2O_7/γ -Al₂O₃ catalysts are open for further investigation. Studies of this type will continue in our laboratories.

ACKNOWLEDGMENT

One of us (JAD) wishes to acknowledge support of Stanford University through NSF Grant No. GP 42186.

REFERENCES

- 1. Banks, R. L., Topics Current Chem. 25, 39 (1972).
- Mol, J. C., Moulijn, J. A., and Boelhouwer, C., J. Catal. 11, 87 (1968).
- Krukov, Yu. B., Bashkirov, A. N., Fridman, R. A., Nosakova, S. M., and Ziberov, L. G., Neftechimia (Russian) 14, 847 (1974).
- Freel, J., Prepr. Amer. Chem. Soc. Div. Petrol. Chem. 18, No. 1, 10 (1973).
- Johnson, M. F. L., and LeRoy, V. M., J. Catal. 35, 434 (1974).
- 6. Fitton, P., and Whitesides, T., U. S. Patent No. 3855338.
- Plyasova, A. I., and Kefeli, L. M., *in* "Methods of Investigation of Catalysts and Catalytic Reactions," Vol. 3, Novosibirsk, 1965.
- 8. Ogawa, E., Bull. Chem. Soc. Japan 7, 268 (1932).
- Soklakov, A. I., and Jarinova, T. L., Proc. NIIUIF, Moscow, 1965.
- Schuit, G. C. A., and Gates, B. C., AIChE J. 19, 417 (1973).
- Poraii-Koshitz, M. A., "A Practical Course in X-ray Structural Analysis," Vol. 2. Moscow University, 1960.
- Karasev, A. N., Polak, L. S., Shlikhter, E. B., and Shpinel, V. S., *Kinet. Katal. (Russian)* 6, 710 (1965).
- Goldanskii, V. I., and Makarov, E. F., in "Chemical Applications of Mössbauer Spec- troscopy" (V. I. Goldanskii, and H. Herber, Eds.). Academic Press, New York, 1970.

YU. V. MAKSIMOV M. YA. KUSHNEREV

J. A. DUMESIC

Department of Chemical Engineering Madison, Wisconsin

> A. E. NECHITAILO R. A. FRIDMAN

Academy of Sciences of the USSR Moscow, USSR

Petrochemical Institute Academy of Sciences of the USSR Moscow, USSR

Received June 15, 1976

University of Wisconsin

Institute of Chemical Physics

117